博客
关于我
谷歌的Deep Search#生成式搜索引擎的进化方向
阅读量:741 次
发布时间:2019-03-22

本文共 299 字,大约阅读时间需要 1 分钟。

谷歌近期发布了一个深度研究助手,旨在提升用户的效率和研究报告生成能力。该助手基于Gemini 2.0 Flash技术,能够提供更强的性能和速度支持。

Gemini 2.0 Flash通过AI技术优化了聊天体验,并显著提升了模型的理解和响应能力。这使得用户能够快速生成高质量的研究报告,快速获取所需信息。系统能够执行深度分析,帮助用户快速浏览和筛选相关信息,显著提升研究效率。

其优势包括:

  • 利用AI进行深度分析,快速筛选相关信息
  • 生成高质量的研究报告,帮助用户快速获取信息
  • 优化聊天体验,提升用户互动效率
  • 通过Gemini 2.0 Flash,用户能够更高效地完成研究任务,充分发挥AI技术的潜力。

    转载地址:http://jwfwk.baihongyu.com/

    你可能感兴趣的文章
    NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
    查看>>
    NLP、CV 很难入门?IBM 数据科学家带你梳理
    查看>>
    NLP三大特征抽取器:CNN、RNN与Transformer全面解析
    查看>>
    NLP入门(六)pyltp的介绍与使用
    查看>>
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:从头开始的文本矢量化方法
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    NLTK - 停用词下载
    查看>>
    nmap 使用总结
    查看>>
    nmap 使用方法详细介绍
    查看>>
    nmap使用
    查看>>
    nmap使用实战(附nmap安装包)
    查看>>
    Nmap哪些想不到的姿势
    查看>>